Чёрно-белая телевизионная камера высокого разрешения с режимом 100-кратного увеличения чувствительности в корпусе наружного исполнения Модель VNN-743-A3

Особенности

- ★ Матрица ПЗС формата 1/3 дюйма поколения EXview HAD CCD[™]
- ⋆ Число пикселей 752 (H)x582(V)
- ⋆ Стандарт ССІR, частота полей 50Hz
- ⋆ Система APУ
- ⋆ Система APBH
- **★** Питание **9 15V**
- ⋆ Ток потребления 250мА
- ⋆ Выходной сигнал 1В на нагрузке 75 Ом
- ⋆ Возможно применение АРД-объективов

типа Direct Drive и Video Drive

Области применения

- * Системы охранного телевидения
- ⋆ Системы видеонаблюдения
- ★ Системы машинного зрения в помещениях с неблагоприятными условиями

Введение

Черно-белая телевизионная камера высокого разрешения с режимом 100-кратного увеличения чувствительности в корпусе наружного исполнения, модели VNN-743-A3 представляет собой камеру стандарта CCIR, размещённую в герметичном корпусе. Камера предназначена для наблюдения объектов на открытом воздухе, в неотапливаемых помещениях или в помещениях с неблагоприятными климатическими условиями.

Камера VNN-743-A3 относится к новой линейке камер с ночными режимами двух видов. Наряду с высококачественным наблюдением днём эти камеры позволяют ночью развивать чувствительность, приближающуюся к чувствительности приборов ночного видения с ЭОП поколений 1, 2 и 2+.

Сверхвысокая чувствительность достигнута за счёт автоматического изменения режима работы ПЗС-матрицы ночью. В камере при снижении освещённости сначала автоматически включается режим интегрирования внутри матрицы ПЗС по площади изображения (суммируются сигналы соседних элементов), а затем по времени (суммируются сигналы нескольких телевизионных кадров).

Герметичный корпус позволяет использовать камеру в условиях большой концентрации вредных для здоровья паров и газов. Обогрев переднего стекла теплом, выделяемым элементами камеры, позволяет обойтись единственным источником питания +12B, что позволяет камере при отсутствии сетевого напряжения работать от простого источника резервного питания.

В камере устанавливается объектив **C/CS-Mount** и фокусным расстоянием от 2,8 до 50 мм.

В модели **VNN-743-A3** возможно применение объективов с автоматической регулировкой диафрагмы (АРД) как типа **Video Drive**, так и типа **Direct Drive**. Углы поля зрения камеры в зависимости от фокусного расстояния применённого объектива приведены в таблице 1.

Таблица 1. Углы поля зрения камер в зависимости от фокусного расстояния применённого объектива

Угол поля	Фокусное расстояние объектива, мм										
зрения, град	2,8	3,6	4,3	4,8	6,0	8,0	10,0	12,5	16,0	25,0	50,0
Горизонталь	81,2	67,4	58,3	53,1	43,6	33,4	27,0	21,7	17,1	11,0	5,5
Вертикаль	65,5	53,1	45,4	41,1	33,4	25,4	20,4	16,4	12,8	8,2	4,1
Диагональ	93,9	79,6	69,8	64,0	53,1	41,1	33,4	27,0	21,2	13,7	6,9

Краткое описание.

Черно-белая телевизионная камера высокого разрешения с режимом 100-кратного увеличения чувствительности, модель VNN-743-A3, выполнена на двух печатных платах – плате фотоприёмника и плате процессора. Светочувствительным элементом камеры является Π 3C-матрица ICX259AL поколения EXview HAD CCD^{TM} производства фирмы SONY. Напряжения, необходимые для работы матрицы, генерирует синхрогенератор той же фирмы. Он же обеспечивает необходимые напряжения для усилителя. Усилитель осуществляет обработку сигналов, поступающих с матрицы через синхрогенератор.

DSP-процессор, расположенный на плате процессора, обеспечивает управление режимами работы ПЗС-матрицы в зависимости от освещённости объекта.

Адаптивный корректор чёткости улучшает качество изображения, компенсируя потери чёткости в объективе и выходном кабеле.

Применение четырехступенчатой системы автоматической регулировки усиления (**APY**) совместно с системой автоматического регулирования времени накопления (**APBH**) позволяет камерам уверенно работать в широком диапазоне освещённостей объектов наблюдения. В камерах **VNN-743-A3** могут использоваться объективы с автоматическим регулированием диафрагмы как типа **Video Drive**, так и типа **Direct Drive**. Переключатель типа объектива **VIDEO/DC** позволяет выбрать тип управления диафрагмой объектива.

Использование АРД-объектива не требует применения системы АРВН, и она может быть отключена переключателем **OFF-ELC** или подачей нулевого потенциала на контакт **OFF-ELC** с контакта **GND**.

Переключателями **MODE1** и **MODE2** устанавливают режимы интегрирования и гамма-коррекции. (табл.2, рис.1).

Потенциометры регулировки уровня **LEVEL** и регулировки усиления **GAIN** предназначены для начальной установки уровня опорного напряжения и коэффициента усиления усилителя АРД-объектива и непосредственно на видеосигнал не влияют.

Такие решения позволяют оператору систем наблюдения не отвлекаться на настройку качества изображения при изменениях освещённости объектов.

Система синхронизации камеры предназначена для работы в стандарте **CCIR**. Телевизионная камера выдаёт на своем выходе полный телевизионный сигнал с синхроимпульсами, врезками и уравнивающими импульсами с частотой полей 50 Гц и размахом 1 В на сопротивлении нагрузки в 75 Ом.

Питание камеры осуществляется от источника постоянного стабилизированного напряжения в диапазоне от 8.5В до 15В. Питание матрицы напряжениями +15V и -7V производит импульсный преобразователь напряжения, синхронизированный с помощью импульсного усилителя с работой синхрогенератора для устранения возможных биений. Ток потребления камеры не превышает 250мА

Камера обеспечивает формирование высококонтрастного телевизионного изображения в широком диапазоне температур от -40 до + 45 градусов Цельсия.

Таблица 2. Режимы, устанавливаемые переключателями **MODE1** и **MODE2**

	MODE 2 MODE 1	Режим максимального интегрирования Гамма коррекция –0,7. (Устанавливаются исходно)
0 I	MODE 2 MODE 1	Режим максимального интегрирования Гамма коррекция –0,45
	MODE 2 MODE 1	Режим ограниченного интегрирования Гамма коррекция –0,45
	MODE 2 MODE 1	Режим ограниченного интегрирования Гамма коррекция –0,7

Основные характеристики

Основные характеристики камеры приведены в таблице 3.

Таблица 3. Основные характеристики телевизионной камеры VNN -743-A3

Параметр	Значение		
Тип камеры	VNN-743-A3		
Объектив	C/CS-Mount		
Телевизионный стандарт	CCIR		
Тип матрицы ПЗС	SONY ICX259AL, EXview HAD CCD™, формат 1/3 дюйма		
Число активных элементов	752 (H) x 582 (V)		
Размер пикселя ПЗС	6,5мкм (H) х 6,25мкм (V)		
Частота полей	50 Hz		
Диапазон регулировки системы АРУ	30dB		
Диапазон регулировки системы	1/50 s – 1/100000 s		
APBH	1/30 \$ = 1/100000 \$		
Минимальная рабочая	0,00004 lk (F 0,8 s/n 20dB)		
освещённость	0,00004 lk (F 0,0 5/11 200B)		
Максимальная рабочая	100000 lk		
освещённость	(при работе с АРД-объективом)		
Размах выходного сигнала	1V on 75 Ohm		
Потребляемый ток	250 mA		
Размеры (пластмассовый корпус)	137x325x187		
Размеры (металлический корпус)	120x265x140		
Масса камеры в пластмассовом	1100 g		
корпусе с кронштейном	1 100 g		
Масса камеры в металлическом	1200 g		
корпусе			

Предельные значения питающего напряжения

Таблица 4. Предельные значения питающего напряжения

Параметр	Условия	Диапазон	Единицы
Напряжение питания +12V	DGND = 0V	От -0,7V до+15V	V

Рекомендуемые рабочие режимы

Таблица 5. Рекомендуемые рабочие режимы

Параметр	Условия	Диапазон	Единицы
Напряжение питания +12V	DGND = 0V	От +9V до+15V	V

Подключение камеры

Подключение камеры к источнику питания и монитору производится при помощи кабеля. Цвет проводников и соответствующие ему цепи приведены в таблице 6.

Таблица 6. Цвет проводников и соответствующие ему цепи.

Цвет проводника	Наименование цепи	Описание
Красный	+12V	Напряжение питания +12V
Чёрный	GND	Общий провод
Жёлтый	VIDEO	Выход видеосигнала

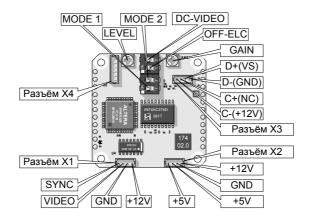


Рис.1. Камера VNN-743-A3. Внутренние органы управления и разъёмы камеры.

Тел. (812) 226-0575 Факс (812) 226-1489

www.evs.ru E-mail: infos@evs.ru

Конструкция камер

Конструктивно камера представляет собой двухстороннюю печатную плату с двухсторонним расположением элементов. В камере широко применены SMD компоненты. Матрица ПЗС типа **ICX259AL** установлена в центре платы симметрично по горизонтали и вертикали.

Камера помещена в герметичный корпус с прозрачным окном и защитным козырьком. Существует два варианта корпусов – пластмассовый из стабилизированного поликарбоната и металлический. Корпус монтируется на кронштейне с поворотным креплением.

Внутри корпуса камера размещена на салазках, что позволяет использовать в ней объективы с различными габаритами, а размещение объектива вплотную к стеклу до минимума уменьшает влияние посторонних засветок на качество изображения.

На рис.2 и рис.3 показаны варианты камеры **VNN-743-A3**, габаритные и присоединительные размеры, на рис. 4 — кронштейн крепления камеры в металлическом корпусе.

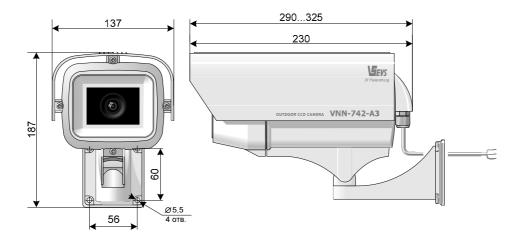


Рис.2. Камера VNN-743-A3 в пластмассовом корпусе.

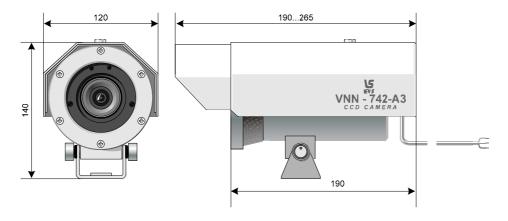


Рис.3. Камера VNN-743-A3 в металлическом корпусе.

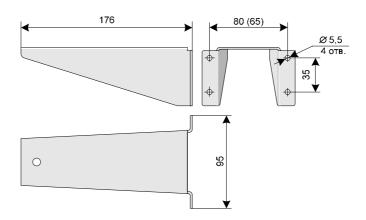


Рис.4. Кронштейн для крепления камеры в металлическом корпусе.

Объективы камеры

В камере применяются объективы **C/CS-Mount**, как с ручным регулированием диафрагмы, так и АРД-объективы. При использовании объектива с ручным регулированием диафрагмы переключатель электронного затвора **ELC-OFF** ставится в положение **ELC**, а при АРД-объективе – в положение **OFF** Переключатель типа объектива **VIDEO-DC**, ставится в положение "**VIDEO**" при использовании объектива **Video Drive** или "**DC**" при использовании объектива **Direct Drive**. Оба переключателя установлены на плате усилителя АРД-объектива и выведены на заднюю сторону платы камеры.

Доступ к органам регулировки открывается после частичной разборки корпуса камеры.

В камере возможно использование сверхширокоугольных объективов, но при этом приходится учитывать большие геометрическое искажения и значительное изменение качества изображения на периферии поля зрения объектива.

Применение сверхсветосильных объективов с F менее 1,2 увеличивает чувствительность камеры.

Условия эксплуатации камер

Таблица 7.

Параметры	Значения
Наработка на отказ	5000 час
Максимальная рабочая температура	+ 45 °C
Минимальная рабочая температура	-40 °C
Максимальная температура хранения	+ 85 °C
Минимальная температура хранения	- 60 °C
Максимальная относительная влажность	90 %

Герметичный корпус камер позволяет применять их в условиях постоянной высокой влажности, выпадения росы или инея. Камера выдерживает ливневые осадки, а также кратковременное пребывание под водой на глубине до 1 метра. Испытание на пребывание под водой проходят все без исключения камеры VNN-743-A3.

Спектральная характеристика чувствительности

Спектральная характеристика чувствительности телевизионной камеры **VNN-743-A3** складывается из спектральной характеристики матрицы ПЗС типа **ICX259AL** (Рис. 5) и спектральной характеристики используемого в камере объектива. Стандартные объективы имеют ровные

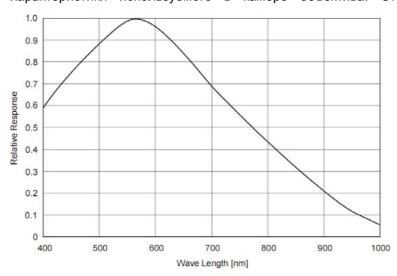


Рис. 5. Спектральная характеристика матрицы ПЗС типа ICX259AL

спектральные характеристики области 0,4 - 1,1 мкм, с небольшим спадом на краях диапазона, поэтому, они почти не оказывают влияния на результирующую спектральную характеристику. Объективы день-ночь, и объективы, специально предназначенные для цветных камер, имеют более сложную спектральную характеристику, значительно отличающуюся в ИК области от характеристики стандартных объективов. Объективы из кварцевого стекла, наоборот, имеют расширенную характеристику области УФ вплоть до 0,3 мкм, что позволяет проводить наблюдение объектов в ближней УФ области.

Характеристики изделия

Чёрно-белая телевизионная камера высокого разрешения с режимом 100-кратного увеличения чувствительности в корпусе внутреннего исполнения Модель VNN-743-A3

Основные

Число активных элементов752 (H) x 582 (V)Тип матрицы ПЗСICX259ALФормат матрицы ПЗС1/3 дюйма

Размер пиксела 6,5 мкм (H) x 6.25 мкм (V)

Телевизионный стандарт CCIR

Оптико-механические

Минимальная рабочая освещенность

Для **VNN-743-A3** с АРД-объективом 0,00004 люкс (F 0,8, отн. Сигнал/шум 20 дБ)

Максимальная рабочая освещенность:

Электрические

Размах выходного сигнала 1 В на нагрузке 75 Ом

Диапазон регулировки системы АРУ 30 дБ

Диапазон регулировки системы АРВН 1/50 с – 1/100000 с

 Напряжение питания
 +(9...15) В

 Потребляемый ток
 250 мА

Физические

Габаритные размеры 137х325х187мм (пластмассовый корпус с

кронштейном)

Габаритные размеры 120х265х140мм (металлический корпус)

Температурные

Рабочая температура от -40 до +45 $^{\circ}$ Температура хранения от -60 до + 85 $^{\circ}$ С

Гарантия

Гарантия на телевизионные камеры моделей **VNN-743-A3** составляет 2 года с момента приобретения изделия потребителем.

OOO ЭВС обеспечивает безвозмездный ремонт камер **VNN-743-A3** при соблюдении потребителем правил эксплуатации.

Области применения

Модели **VNN-743-A3** предназначены для видео приложений, где требуется сочетание малых габаритов, широкого диапазона рабочих освещенностей и высокой чувствительности.

Предприятие изготовитель постоянно модернизирует изделия и оставляет за собой право вносить изменения, улучшающие его технические характеристики.